

James Webb Space Telescope (JWST)

Rick Howard

JWST Program Director

NAC Technology and Innovation Committee

March 6, 2012

JWST – the next great observatory

JWST is the scientific and technological successor to HST

■ HST has looked deeper into the Universe that any telescope. It took HST more than three continuous days to do so. JWST will do that in less than an hour

JWST is:

- More than 6 times the collecting area of HST
- 100 times more sensitive than HST, over 1000 times more than Spitzer
- Operated at 40K (~ 400 F)
- Operated in deep space, about 1,000,000 miles from Earth (4X further than the Moon)
- Cooled by a deployed sunshade the size of a tennis court

TECHNOLOGY INVENTIONS

Segmented Beryllium Primary Mirror

- areal density 3 times less than HST
- Technologies for JWST mirror manufacturing and polishing broadly applicable for future space telescopes
- Must fold up to fit inside rocket fairing, breaking the limitation on mirror diameter

Composite structure to hold mirrors and instruments

- Behavior must be known to <40 nanometers (~1/10,000 of a human hair)
- Must maintain this stability while being cooled over 400 degrees

Cryogenic Application Specific Integrated Circuit (ASIC)

 JWST ASIC already flying in space: Installed on Hubble Servicing Mission 4 to repair the failed Advanced Camera for Surveys (ACS) instrument

Micro-Shutters

- ~100,000 computer controlled shutters, each the width of a human hair
- First Mirco-ElectroMechanical (MEMS) devise for science to be flown in space
- Early research on MEMs devised for JWST helped develop analogous instrument for ground-based telescopes

Sunshield Membranes

- Lightweight deployable sunshield the size of a tennis court to passively cool JWST telescope and instruments
- 5 thin separated membrane layers (each less than half the thickness of a piece of paper)
- Providing a 500 F temperature difference (equivalent SPF of 1,000,000)

Advanced Near Infrared Detectors

- Advanced Mid-Infrared Detectors
- Cryo-cooler for Mid-Infrared Instrument
- Mirror Phasing and Control Software
- Heat Switches

TECHNOLOGICAL ADVANCES

science return

The Final Acceptance Test Completes a Decade plus Development Effort to Make JWST Mirrors

Coated Primary Mirror Segment Assembly

Primary Mirror Assembly

Primary wirror composite

Mirrors Completed

Mirror	RMS	Surface Figure	Error [nm]	
Element	Measured	Uncertainty	Total	Requirement
18 Primary Segments (Composite Figure)	23.7	8.1	25.0	25.8
Secondary	14.5	14.9	20.8	23.5
Tertiary	17.5	9.4	19.9	23.2
Fine Steering Mirror	14.7	8.7	17.1	17.5

Completed Mirrors in Storage

Flight Backplane Bonding Status

Status as of: 11/30/20

PMBSS Center Section fabrication and assembly

- Piece part fabrication 100% complete
- Assembly bonding continuing @ ~87% complete

: Not Assembled : Assembled : Recently assembled since

PMBSS Center Section Assembly - in process

Center Section Assembly Locations

Sunshield Template Membrane Work On-Going

- Template Layer 3 build and testing complete. Packed for shipping to NGAS
 - Shape measurements show RMS error of 0.71 in. versus requirement of 0.75 in.

- Template Layer 5 seamed and catenaries/fill regions installed.
 Currently getting edge features and grommets installed
- Template Layer 4 fully seamed

MIRI Cryo Cooler Overview

- ◆Provides the needed active cooling to ~6K for the MIRI detectors and Optical Assembly
 - The first long life, 6K mechanical cooler
 - Implemented as hybrid multi-stage mechanical Pulse-Tube Joule-Thomson (JT) Cooler
 - Challenging architecture with the 6K load several (~10) meters from the compressors

Technical Issue – Detector Degradation

- Flight detector testing shows a degradation in pixel operability
 - Impacts NIRCam, NIRSpec, and FGS

Detector FRB complete

- Found that detector degradation is caused by a design flaw which impacted its performance
 - The Detector FRB found that the detector degradation is caused by a design flaw in the barrier layer of the pixel interconnect structure, degrading its performance
 - The flawed barrier layer design makes the detectors vulnerable to migration of indium from the indium bump interconnect into the detector structure
- Determined manufacturing and/or post-manufacture handling process changes are appropriate
- Defined tests needed to screen-out degradation prone parts and insure the continued integrity of flight part
- Fabrication of next generation detectors for testing (Jan-April) is underway
- Decision for the detector swap will be in March 2012

Technical Issue – Detector Degradation

ETU Detector Status

- Teledyne has recently completed testing Short Wave (SW) detectors fabricated for their ground-based astronomy customers.
 - Several of these SCAs were fabricated using new bake-stable process which will correct degradation issue seen on JWST detectors
 - Are similar to the JWST SW parts, thereby providing the first performance test of JWST-like parts using the new process
 - Test results show the new process does not appear to have any adverse effect on science performance
- Still on schedule to receive the first Mid-Wave and SW detectors in early January
 - Total of 22 SCAs to be delivered (Jan-April) for testing
 - Testing starts at Teledyne in Jan, then proceeds to University of Arizona and the GSFC Detector Characterization Lab in Feb.

JWST Tech Spin Offs

New Optical Measurement Devices

- The need to accurately measure the shape of the JWST mirrors required significant improvements in wavefront sensing technology (Scanning Shack-Hartman Sensor)
- Has enabled a number of improvements in measurement technology for measurement of human eyes, diagnosis of ocular diseases and potentially improved surgery
 - Eye doctors can now get much more detailed information about the shape of your eye in seconds rather than hours
 - Four patents have been issues as a result of these innovations

Cryogenic ASIC

- JWST developed a low-noise, cryogenic ASIC to convert the analog signals from the near-IR detectors to digital
- Same design used on ASIC now being used in the Advanced Camera for Surveys which was repaired during the HST SM-4 servicing mission
- "future heritage"

JWST Tech Spin Offs

Laser Interferometers utilizing High Speed Optical Sensors

- JWST needed to make measurements of mirrors and composite structures with nanometer precision in cryogenic vacuum chambers (with vibrations from pumping systems a constant problem)
- JWST provided 4D its first commercial contract to develop the PhaseCam interferometer system
- 4D Technology Corp has developed several new types of high-speed test devices that utilize pulsed lasers that essentially freeze out the effects of vibration
- 4D has gone on to generate over \$30 M in revenue from a wide range of applications in astronomy, aerospace, semiconductor and medical industries based on the technologies developed for JWST

Implementing the New Baseline

- Completed the replan (9/23/2011) with an October 2018 launch date
 - Plan has adequate cost and schedule reserves consistent with ICRP recommendation
 - Additional \$44M in FY11 was approved by Congress
 - FY12 budget approved by Congress with full funding for JWST
 - FY13 PBR fully funds the new baseline

Recent Accomplishments

- All flight optics have been cryo tested and meet requirements
- Completed the Aft Optic System integration and alignment
- Primary Mirror Backup Support Structure center section nearly complete (94% of bonding is complete)
- Sunshield full scale Engineering Development Unit for layer #3 testing completed with good results
- Instrument deliveries to GSFC begin in Spring 2012
- Brought back in work with additional FY11 funding and FY12 budget
 - Accelerated: Backplane Support Frame (BSF) by 4 months, completion of PMBSS by 4 months, start of Wings by 18 months, end of Flight Optics Integration by 4 months
 - Still have 13 month of funded schedule reserve on critical path
- Instrument deliveries slipped moving ISIM delivery to OTIS by 5 months (31 months to 26 months)
 - Even with Detector change out, still have 11 months slack for ISIM delivery to OTIS
 - ETUs for NIRSpec and NIRCam will be used in ISIM Cryo Test 1(all have flight hardware for CT 2+3)

JWST made great progress in FY11 and continues to do so in FY12, achieving milestones within cost and schedule and executing to the new baseline

Hardware Fabrication Completion Percentages

20

Master Schedule

-To-Go (FY12 to Launch and Commissioning)

Relative proportion of project funding to-go

% work on this element to-go

Optical telescope element Simulator (OSIM) Integration

On Track for Cryo Verification mid-April 2012

Status as of: 1/31/12

Telescope Assembly Ground Support Equipment

Hardware has been installed at GSFC approximately 8 weeks ahead of schedule

OTE Testing – Chamber A at JSC

Notice people for scale

Will be the largest cryo vacuum test chamber in the world

Center of Telescope Curvature Optical Test Equipment

Multi Wavelength Interferometer (MWIF)

Displacement Measuring Interferometers (DMIs)

BACKUP

TECHNICAL DETAILS

Stowed Configuration

- Optical Telescope Element (OTE) diffraction limited at 2 micron wavelength.
 - 25 m², 6.35 m average diameter aperture.
 - Instantaneous Field of View (FOV) ~ 9' X 18'.
 - Deployable Primary Mirror (PM) and Secondary Mirror (SM).
 - 18 Segment PM with 7 Degree of Freedom (DOF) adjustability on each.
- Integrated Science Instrument Module (ISIM) containing near and mid infrared cryogenic science instruments
 - The Near-infrared camera functions as the on-board wavefront sensor for initial OTE alignment and phasing and periodic maintenance.
- Deployable sunshield for passive cooling of OTE and ISIM.
- Mass: ≤ 6530 kg.
- Power Generation: 2000 Watts Solar Array.
- Data Capabilities: 471 Gbits on-board storage, 229 Gbits/day science data.
- Science Data Downlink: 32 Mbps.
- Life: 5 years [Designed for 11 years (goal) of operation].